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The computation of flows in Lava1 nozzles involves great difficulties 
in the construction of the flow field in the neighborhood of the very 
narrow transverse section of the channel where the transition is 
effected from subsonic to supersonic velocities. The first general re- 
sults on the structure of plane-gtareflel gas motion in the neighborhood 
of the sonic curve nere obtained by Khristianovich ill. In particular, 
a necessary condition uas deduced for the analytic continuation of the 
flor from the subsonic to the supersonic domains In nozzles. The stream 
singularity in the neighborhood of the channel center is associated with 
the fact that the tangents to the transition line and the characteristics 
passing through the axis of symmetry coincide. By relying on the hodo- 
graph transformation Frankl’ Investigated the character of plane-parallel 
flon near the sonic line in detail [21. Not only analytic flow but also 
flow rith dlscontinuities in the first derivatives along the Mach lines 
passing through the center of the nozzle were examined by Frankl’. 
Falkovich shored that the results obtained by Frankl’ can be simplified 

considerably if the rhole investigation Is performed in the plane of the 
physical variables 131. Falkovich succeeded In writing the principal 
term of the solution as a third degree polynomial. The theory of a plane 
nozzle uas also rorked out by Llghthill [41, Cherry [51, Ehlers M, 
Tricomi and a of other 

The transition the speed sound in neighborhood of 
throat of axisymmetric Lava1 was analyzed [81. It shorn 
there an investigation the axisymmetric could be 
out rith same completeness was achieved the study the plane- 

motions. 

Only in which are absent examined in the 
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papers listed. In practical respects. these flows are most interesting. 
In order to guarantee a flow without shocks in the neighborhood of the 

center of the nozzle, sufficient conditions were deduced to ensure the 

potential character of both plane-parallel [71 and axisymmetric motions 

[81 . H owever, the reasons leading to the formation of shockwaves in the 

neighborhood of the nozzle throat were not established. The conditions 

under which flows are obtained with a compression shock through the 

center of the.channel tangent to the sonic curve and the influence of 

the induced perturbations on the gas motion in the inlet remained un- 

clear. 

First every kind of continuous non-analytic flows is studied here. 

It turns out that a limit line bearing infinite values of the accelera- 

tion appears in such flows under definite conditions. Since gas motion 

with infinite accelerations is physically without meaning, either a 

shockwave is formed prior to the appearance of the limit line or the 

flow as a whole is completely changed. It is established that a shock- 

wave is formed at the center of the nozzle in discontinuous motions and 

is carried downstream. It is impossible to construct flows with a shock- 

wave arriving at this point; they are destroyed as a result of the per- 

turbations induced by the compression shock. A shockwave is formed only 

when a limit line appears in the flow first; it is impossible to intro- 

duce a shockwave into a flow where there are no infinite accelerations. 

A compression shock does not disturb the gas motion in the nozzle 

entrance; the flow beyond it continues to be expanded although more 

slowly than in continuous flows. 

If the throat of the channel is upstream of the point of intersection 

of the sonic curve and the axis of symmetry, then no shockwaves occur in 

the gas motion, It is established that the flow also remains shockless 

when the narrowest section of the nozzle is located further downstream 

than its center but the distance between them does not exceed a certain 

limit. An increase in the distance between the throat and the entrance 

of the channel leads to the formation of shockwaves. Hence, the transi- 

tion part should not be made too long in constructing nozzles. The 

origin of a compression shock is least probable in the transonic Part of 

a nozzle whose walls bave breaks. Shockwave formation is associated with 

deceleration in the region behind the characteristic closing the 

entrance, when it occurs more abruptly than according to a linear law. 

Alsu flows with local supersonic zones adjoining the channel walls 

and interlock’ing on its axis are investigated. Such flows were first 

analyzed by Tomotika and Tamada [91 and Tomotika and Hasimoto [lo]. 

1. Shockless plane-parallel flows. Let us consider the gas 

motion in the neighborhood of a very narrow transverse section of a 
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nozzle where its character changes from subsonic to supersonic. Let us 
consider that the particle velocity in that region is near critical in 
magnitude, and the angles between the direction of the velocity and the 
axis of the channel are small. lhe entropy can be taken constant in the 
whole field of such a flow. ‘Ihe origination of compression shocks in 
the supersonic part of the flow does not violate the assumptions made 
since their intensity cannot be large. 

Let U and V denote the components of the particle velocity vector 

along the x and F axes, where the former coincides with the nozzle axis 
and the latter is selected in a perpendicular direction. The direction 
of the basic gas motion with critical speed a* will then be parallel to 
the x-axis. Let p denote the pressure, s the specific entropy, p the 
density and T the specific volume; the critical values of the gas para- 
meters will be marked with asterisks. In order to investigate the flow 
in the transonic velocity range it is convenient to introduce the non- 
dimensional functions 

u=24=5, z=2m,E (m,=&(-& P=$) 
a* * l 8 

which satisfy the system of differential equations [llI 

-_u ;+g+ (v-1).+0, g=g (1-l) 

Here v = 1 for plane-parallel flows and v = 2 for flows with axial 
symmetry. We shall also consider the independent variables x and F non- 
dimensional. 

Gas motion without compression shocks cannot be realized through the 
whole nozzle. In practical respects, nozzles guaranteeing shockless flow 
are of greatest interest. To elucidate the reasons leading to the forma- 
tion of shockwaves in the neighborhood of the narrowest section of the 
channel, let us pose the following Cauchy problem for equations (1.1). 
At F = 0, i.e. on the flow axis of symmetry, let 

(I.21 
11 = A12 for e<O, 24 = Asz for s>O, V = 0 (--%>A),O) 

Hence, a discontinuity in the derivative &fix is admitted at the 
point x = F = 0. ‘lhe sonic curve intersects the axis at this point, 
called the center of the nozzle. The magnitude of the discontinuity in 
au/ax determines the nature of the transition from subsonic to super- 
sonic velocities. Two streamlines symmetric with respect to the x-axis 
can be taken as the channel walls in a flow constructed as a result of 
the solution of problem (1.2). 
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Let us investigate, initially, the plane-parallel motions which con- 

tain no canpression shocks. Using the stream symnetry, we shall later 
consider only the upper half-plane of the physical variables zr. The 

system of equations (1.1) and the initial conditions (1.2) are invariant 
with respect to the continuous group of similarity transformations 

x + ax, r -* a%, u -au, v 4 a’4 

where a is an arbitrary constant not equal to zero. Hence, we conclude 

that the desired solution of the Cauchy problem is self-similar; to de- 

termine it let us put [3,81 

u = r’f (%)I v-r?!(%), %=x/f (1.3) 

For v = 1 the functions f and g satisfy the following system 

f 
df 
- - 3g + 2g !$ = 0, 
dg 

2E$f$-2f=O 

Hence, eliminating the function g, we obtain an equation for f 

After integrating (1,4), the quantity g is determined by the relation 

g = $ r(f - 4Y’) dfM + 4%f 1 0-5) 

Equation (1.4) has a simple particular solution [3I, which we shall 
call “fundamental” 

f = +A2 + A% (1.6) 

Using the latter equality, let us write the solution 

u = A,x + $Al“r2. v =A,axr +$A,SP (1.7) 

of the original system of partial differential equations (1.11, which 

satisfies the initial conditions (1.2) in a domain located to the left 

of the singular C_ ‘-characteristics arriving at the center of the 

nozzle. lbe desired solution has a similar form in the domain to the 
right of the singular C+ o-characteristics issuing from this point 

u = A,x + $- A,aP, v = A;xr + fA,J? (1.8) 

For A1 = ,j2 = A (1.7) and (1.8) coincide and also yield the solution 
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of (1.1) in the domain included between the singular CT’-characteristics. 

‘lhis single solution corresponds to the flow in an analytic Lava1 nozzle. 

For A, Y A,, with the exception of one special case [RI, the solution 
in the domain between the singular characteristics cannot possibly be 
represented in such a simple form. In the sequel it will be convenient 
to consider the quantity A, and, therefore, the whole flow in the 
entrance of the nozzle as unchanged, the values of the constant AZ will 
be subject to change. 

‘Ihe sonic line is obtained by equating u in (1.7) to zero 

x = +A,f 

‘lhe characteristics (Mach lines) are defined by the solutions to the 
differential equation 

dx * ( ) z = u= AI.* x ++A,.,P f 
In the case under consideration the singular Cp-characteristics, 

which pass through the center of the nozzle and are tangent to the tran- 

sition line at this point, are given by the formulas 
(1.9) 

x = -t Arr* (C-O- charaoteristicj, x = t&r* (C+‘- characteristic) 

‘lhe neighborhood of the center of the flow is .&own in Fig. 1. ‘Ihe 
C-O-characteristic is the boundary of regions 1 and 3 and the C+O- 
characteristic separates region 3 from region 2. The solution of equa- 
tions (1.4) in domain 1 is given by (1.6) with A = A,; in domain 2 by 
the same equality with A = A,. ‘l’he functions u and v must remain con- 
tinuous upon passing through the characteristics while their derivatives 

may have discontinuities of the 
first kind. Let us derive two bound- 
ary conditions for the integration 
of (1.4) in domain 3 from the con- 
tinuity of the function u on the 
singular CT’-characteristic 

(1.10) 

f = fr = ‘l,A,’ for & = &I = --‘I, Al, 

Fig. 1. 
f=fa=Al’ for E= t = I/,A, 

Since Al > 0 and A, > 0, then c1 < 0 and c2 > 0. 

In order to simplify the qualitative investigation of nonanalytic 
gas flows, let us put 
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f = E2F (q), g = Y* rl= ln IEI (i.11) 

Eqation (I .,I) in tlke new variables becomes 

dY Ya+7YF+6Fa-fOY--6F 

dF= Y(4-FF) 
(1 .i.q 

An investigation of the fundamental properties of this equation was 

carried out in [81. The general picture of the field of its integral 

curves is shown in Fig. 2, which shows the character of the singular 

points, of the curves YI* anti I,* on which the values of the derivative 

~iy/<iF equal zero as well as of the lines F = 4 and ‘i-’ = 0 where the 

derivative tly/dF becomes infinite. 

By using the FI “phase* plane, let us establish the fundamental pro- 

perties of the studied flows by drawing initially upon the relation be- 

tween the values of the constants Al and A2 and the nature of the tran- 

sition from subsonic to supersonic speeds. Three singular points A(0, O), 

C(4, -8), o(4, -12) located in the finite part of the FY plane and two 

infinitely distant singular points E and G, which are reached during 

motion downward along the lines ‘Y = - 2F and ‘f’ = - 3/2F. respectively, 

are of interest for the mentioned reasons. 

It is easy to show that the point A corresponds to the x-axis; the 

point C cdrresponds to the C+‘- characteristic and the point D to the 

C_‘-characteristic defined by (1.9); the points E and G correspond to 

the r-axis. It follows from (1.3) and (1.11) that the ordinate axis cor- 

responds to the sonic line. the half-plane to the right of this axis to 

the domain of supersonic speeds and the left half-plane to subsonic 

speeds. If one moves along a certain integral curve in the FY plane then 

the lines 5 = const will describe a definite region of the physical 

space. The values of c on the considered curve should not have extrema 

since we will otherwise obtain a multivalued physical plane xr in which 

the flow is superposed upon itself. The line bearing the extremum value 

of 5 is the limit line along which the values of the derivatives of the 

velocity components with respect to the coordinates become infinite. 

Using (1.11) and (1.12), it is easy to see that passage across the line 

F = 4 is impossible. Only the integral curves passing through the singu- 

lar points C and D are an exception. 

Using (1.11) we find 

df I df; = (2F + Y) 8 
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Hence, an equation can be obtained for the integral curve K, which 

will be the image in the FY plane of the fundamental solution (1.6) 

(1.13) 

I =-(i+wsvmj 

If one moves in the physical 

space from the subsonic to the 

supersonic velocity region then 

the motion along the curve (1.13) 

will be in the direction shown in 

Fig. 2 by the arrow. ‘Ihe lower 

branch of the curve I{, is the 

single passage through the point 

D in the direction E of the inte- 

gral curve of equation (1.12). 

Domain 1 in non-analytic flows 

with weak discontinuities along 
the singular CT’-characteristics 

will be shown, as before, by the 

segment of the curve K, located 
between the points A and D and 

the gas motion in domain 2 by the 

segment of the curve K, lying be- 

tween the points C and A since 

.( 1.13) depends neither on A, nor 

on A,. ‘Ihe values of f are con- 

tinuous on the characteristics 
and the values of df/e have dis- 

Fig. 2. 

continuities. Hence, it follows 

that the values of F should also be continuous and, according to (l.lO), 

should equal4, but the values of Y should undergo discontinuities of the 

first kind. Hence, by moving along the segment of the curve K, from the 

subsonic side and reaching the point D, we obtain the single possibility 

of realizing flows with weak discontinuities by crossing the shock from 

the point D to the point C. From the point C it is then possible to move 

along any integral curve included between two branches of the curve K, 

to the point E and then to return again to the point C along the con- 

tinuation of this curve. 

The linear function 

‘Y=2-22F (1.14) 

is an integral of (1.12) corresponding to the line shown in Fig. 2 by 

K2. When the gas motion in the domain which is included botneen the 

Mach lines passing through the center of the nozzle is mapped by the 
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line (1.141, then this line first proceeds in the customary direction 

from the Point C to the point E and then back, from the point E to the 
Point C. One of the branches of all the remaining integral curves of 

(1.12) which map the continuous non-analytic flows, is located between 
the line K, and the lower branch of the curve K,, the other is between 

this same line and the upper branch of the curve K,. It is possible to 
move from the point C to the point E along any branch of the considered 
integral curves, whereupon we obtain the flow in the domain between the 
C_‘-characteristic and the r-axis in the physical plane. The flow in the 
domain between the r-axis and the C+’ -characteristic is mapped by the 
second branch of the chosen integral curve. In the limiting case the 
motion will proceed along the curve K, drawn in the opposite direction, 
i.e. from the point D to the point C by a jump, from this point along 
the curve Kl to the point and then along its continuation to 
D and again, by a jump, to C. 

The study of the field of integral curves of (1.12) permits the 

establishment of the fundamental properties of flows having weak discon- 

tinuities and the elucidation of the reasons leading to the formation 

of shockwaves in the neighborhood of the nozzle throat. 

‘IIke flow beyond the C+O- characteristic is mapped by the segment of 

the curve K, between the points C and A; hence, it follows that discon- 

tinuities of the first derivatives of the particle velocity components 

with respect to the coordinates will not occur on the C+‘-character- 

istics even if they did on the C_ ‘-characteristics. ‘Ihe discontinuities 

in the first derivatives of the velocity components, which occur at the 

center of a plane nozzle along the CT_‘-characteristic, are reflected 
along the C+‘-characteristic as discontinuities in the second derivatives. 
The exception in this respect is only the limiting case when the flow be- 

tween the singular characteristics is mapped on the curve fi, going in 

the reverse direction. In the limiting case the discontinuities in the 

first derivatives of the velocity components with respect to the coordi- 

nates are formed both on the C_“-characteristics and the C+ O-character- 

istics. 

The single integral curve going to the infinitely distant singular 

point G is the line K, 

w = - 31,F (1.15) 

bet us select the segment of the integral curve of (1.12) which is 

included between the line (1.15) and the upper branch of the curve I(, 
as the mapping of the flow between the C_‘-characteristic and the r- 
axis. ‘lhen the flow between the r-axis and the C+‘-characteristics is 
mapped on the integral curve which is a continuation of the mentioned 

segment and is located under the lower branch of the curve K,. As F * 4 
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the values of P along the considered integral curve decrease and 

approach infinity in absolute value. Hence, it follows that the C+“- 
characteristic in the downstream flow constructed in such a manner is 

simultaneously the limit line since it has infinite values of the deri- 

vatives of the velocity components. Under real conditions gas motion 

with infinitely large accelerations cannot be realized: a shockwave is 

formed either before the appearance of the limit line or the flow as a 

whole changes its pattern. 

When the flow downstream of the C-O- characteristic in the F’f’ plane 

is mapped by the curve KS then the r-axis is the limit line. 

Let us take the integral curve of (1.12) located above the line K, 

as the curve mapping the flow behind the C_‘-characteristic. The con- 

sidered curve intersects the horizontal axis and goes upward toward in- 

finity as F - 4. In the corresponding gas motion, the limit line is to 

the left of the r-axis; infinite values of the acceleration along it 

fall at the center of the nozzle. 

2. Plane-parallel flows with shockwaves. Let us now examine 

the formation of shockwaves in the flows with limit lines which we con- 

structed. Shown in Fig. 3 is the neighborhood of the nozzle center at 

which a compression shock (the curve S) appears; this latter will be 

more curved than the C+“-characteristic, where- 

fore only one C_ O-characteristic will pass 

through the nozzle center in the discontinuous 

gas motion. 

lhe equation of the shock polar for tran- 

sonic flows may be represented approximately 

as [121 

2 (va - VzY = h -0 @a + us) (2.1) Fig. 3. 

JIere the values of the subscripts on the functions u and II denote 

the numbers of the domains in Fig. 3 in which they are evaluated. Equa- 

tion (2.1) is a supplementary boundary condition which must be satis- 

fied in constructing discontinuous solutions of the Cauchy problem 

(1.2). The continuity of the projection VT of the velocity vector along 

the tangent to the shock S is the second boundary condition which must 

be satisfied in passing through the shock front. Let y denote the angle 

between the direction of the velocity and the normal to S. Jhen 

V, = U sin r + V cos y 

In gas motions where the particle velocity deviates only insignifi- 

cantly in magnitude from the critical, the angle y is small. JJence, it 
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is possible to set sin y = dx,/dr; cos y = 1 and to consider the shape 

of the compression shock to be given by the formula x2 = X,(F). ‘he con- 

tinuity condition of the tangential component VT of the velocity vector 

is written as [121 

(2.2) 

Equations (2.1) and (2.2) are also invariant with respect to the 

above-mentioned group of similarity transformations. Hence, the desired 

discontinuous solution of the system of equations (1.1) will be self- 

similar as before and will have the form (1.3)) where the solution in 

domain 1 is given by (1.7) and in domain 2 by (1.8). The parabola 

x = Ezra (2.3) 

where the value of the constant tz depends on the magnitude of the dis- 

continuity of the derivative &/ax at the center of nozzle and is sub- 

ject to determination, is the equation of the shock front. 

Condition (2.2) is written as 

g, - k!, = - z2 (f2 - fs) 

IJsing the latter equality, let us simplify the equation of the polar 

(2.1) 

f2 + fs = SE2 

after which let us transform this equality itself by using (1.5) to 

(f, - 4S,p)% + lOEzf, = (fs - 4w d$ + W2fs 

(2.4) 

(2.5) 

‘Ihe obtained boundary conditions (2.4) and (2.5) must be satisfied 

on the right end of the interval when integrating (1.4) in domain 3. 

‘Ihe boundary condition on the left end is given, as before, by the first 

of formulas (1.10). 

To investigate the flows with shockwaves qualitatively, let us again 

use the FY plane, where at the beginning we shall, as before, dispense 

with the relation between the character of the transition through sound 

speed and the values of the constants A1 and A,. Equation (2.4) in the 

F Y plane becomes 

F, + F, = 8 (2.6) 

Let us find the relation between the quantities I, and Y, from 
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condition (2.S): 

‘I’, + ‘Py, = - 36 (2.7) 

Since the flow in domain 2 behind the shockwave is described by 

(1.8) and, under the assumption made in formulating the Cauehy problem 

(l.?), its velocity increases; as before, it is mapped by the segment 

of the I(, curve between the points C and ,1. Actually, because of the 

equalities (1.6) and (1.11) 

A, = (- 1 * VI + 23-s) Es (2.8) 

Ilence, it follows that AS >O for E_2 > 0 only when F, >O and the 

upper sign should be selected in front of the square root. The inequal- 

ity t2 > 0, as will be shown below, is always satisfied. Hence, the 

quantities F, and ‘Yz are connected by means of relation (1.13) where 

the upper sign is also taken in front of the root. By using (2.6) and 

(2.7) it is easy to obtain the connection between the quantities F, and 

‘t’, which characterize the state of the gas ahead of the shockwave 

UT, = - (19 + 2F, + vi7 - 2F,) (2.9) 

It is necessary to add an inequality expressing the fact that the 

shock compression process is irreversible. In the considered approxima- 

tion the entropy in the whole stream is constant, it does not even 

change when passing from domain 3 to domain 2. ‘Ihe condition character- 

izing the irreversibility of the shock compression is conveniently taken 

as 

since the particle velocity behind the shock front cannot exceed the 

velocity ahead of it by virtue of the 7emplen theorem. Jlence, it follows 

that 

Taking account of (2.6), we find that the values of F, cannot be less 

than 4. 

In Fig. 2 the equality (2.9) determines the segment of the lower 

branch of the curve K,+ located in the interval 4 < F<8. Upon approach- 

ing the left end of this segment flows are obtained with vanishingly 

weak shockwaves; the right end corresponds to a flow in which the velo- 

city behind the shockwave equals the critical velocity in magnitude but 



464 O.S. liyzhov 

is parallel to the x-axis in direction. only part of the integral curves 
of (1.12) intersect the curve I(,*. This latter is a continuation of the 

integral curves adjoining the upper branch of the curve Kl and included 
between it and the 1 ine KS. Continuations of all the remaining integral 

curves iSSUing from the point C and located below the line K3 do not 
intersect the curve K1+. Hence, only part of the flows in which the 
limit line is the C+‘- characteristic extending downstream can be real- 

ized if shockwaves are introduced. The class of discontinuous flows can 

be broadened but then the velocity in domain 2 behind the shockwave will 

diminish along the direction toward the exhaust section of the nozzle. 

These flows will be examined later. When the limit line in the flow is 

located to the left of the r-axis or coincides with it then the gas 

motion cannot be continued successfully through the compression shock. 

It is impossible to realize such flows in practice. 

It should be noted that the compression shock is generated at the 

nozzle center in all the discontinuous gas flows and extends downstream. 

lllis follows directly from the fact that it is possible to intersect 

the curve I(,*, which is the image of the state of the gas ahead of the 

shock front, only by bypassin g the infinitely distant point !? for 

motions along the integral curves in the Pi’ plane. As has been mentioned 

in the previous section, this corresponds to the r-axis. Actually, the 

inequality t2 > 0 always holds. It is impossible to construct flows with 

shockwaves arriving at the center of the nozzle. If a shockwave were to 

be generated in the domain to the left of the r-axis, then the gas 

motion would be transformed as a result of the induced perturbations. 

?he C-O- characteristic at the center of the nozzle is the bearer of 

the discontinuities of the first derivatives of the velocity vector com- 

ponents with respect to the coordinates both in continuous non-analytic 

flows and in flows with shockwaves. l?oth kinds of gas motions are 

mapped in the FY plane by curves which issue from the point C; only a 

shock from the point D can hit at this point. Hence, the discontinuities 

in the first derivatives of the velocity components can be reflected 

from the nozzle center both as weak discontinuities and as discontinu- 

ities in the functions themselves. 

Let us note that the shockwaves originate only in flows having limit 

lines. It is impossible to keep such flows shockless. At the same time 

it is impossible to introduce compression shocks in motions in which 

limit lines have not been formed first. Germain and Gillon [13,1d and 
Cor’kov and Pitaevskii [151 obtained analogous results in the investiga- 

tion of the problem of incidence of a weak discontinuity on a transi- 

tion line. 
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3. Dependence of the character of the transition through 
sonic speed on the magnitude of the discontinuity of the de- 
rivative &I/& at the center of the nozzle. Let us turn to the 
elucidation of the character of the integral curves of (1.4), which cor- 
respond to the curves considered above in the F’t’ plane. 

The integral curves in the ef plane determine the change in the 
magnitude of the nondimensional perturbation velocity u as a function 
of the nozzle length for r = const. To a first approximation the lines 
r = const may be equated with streamlines, hence, the solutions of (1.4) 

give the change in the velocity and also the pressure, density and 
temperature along the streamline in the neighborhood of the nozzle 
throat. Let us note that the magnitude of the discontinuity in the deri- 
vative au/ax on the C_ O-characteristic cannot be arbitrary. Actually, by 
evaluating df/@ upon approaching the C_“-characteristic from the right 
we have 

(3-i) 

Hence, denoting the magnitude of the discontinuity in the derivative 
&/ax on the C_ O-characteristic by [au/a,3 1, we obtain 

au 
[ 1 ’ Al<0 &1=-T 

Hence, by prescribing the flow to the left of the C-O-characteristic, 
it is possible to obtain both continuous flows and flows with shockwaves 
to the right of it but the value of the jump [au/ax] 1 along the bound- 
aries of the flow will be the same in all the non-analytic flows. 

Let us examine the integral curve of (1.4) to which corresponds a 
certain curve in the F plane starting and ending at the point C, i.e. 
the curve which maps shockless gas motion. Approaching the C+‘-character- 
istic from right and left, we have 

dfs A 

Jg= a (3.2) 

and in conformity with the above 

[ 1 au 0 & * = 

Equations (l.lO), (3.1) and (3.2), which must be satisfied at the 
ends of the interval when integrating (1.4) in the domain 3 can be given 
the form 

(3.3) 



Simultaneous compliance with the last four equations is made possible 

because the ends of the interval P(c,, f,) and Q(Ej2, f,) are singular 

points of (1.4) through which a non-den~erahle manifold of integral 

curves with the same slope passes. In fact, evaluating the roots df*/c& 

of the expression 

we have 

This assertion also follows from the fact that the point C is sin&w- 

lar for (1.12). 

Using the inequalities <I < 0, c2 > 0 and formula (3.3), it is easy 

to see that dfl/$ < 0 and Ctf.JcSj > 0, i.e. the function f is not mono- 

tonic in the considered interval when the flow is shockless. in con- 

forming with this, the quantity U, ’ whct~ is proportional to the non- 

dimensional perturbation velocity, first starts to decrease in shockless 

flows and then grows in the region between the singular CF-character- 

istics along the line r = const. 

Tile integral 

f = 3B2 + E2 (3.4) 

of equation (1.4), where the letter l? denotes an arbitrary constant, 

corresponds to the solution of (1.14) in the <f plane. Let us evaluate 

the function g hy using formula (1.5) 

JJence 

11 = 3~92 + x ’ 
( ’ TJ’ - 

u = 6B’Qr - -i- (5)” (3.5) 

The singular Cp- c!nrracteristics are located symmetrically with re- 

spect to tlte r-axis in the constructed flow 

ES- Br2 (c_~ -characteristic), x = Bra (C,“-characteristic) (3.6) 

By satisfying the boundary conditions in the form (l.lO), we find 

B = fAl, A2 =2B 

llence, it follows that the considereJ gas motion is realized in the 
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domain included between the singular Mach lines (3.6) when the value of 

the derivative au/& in the nozzle entrance is twice the value of this 
derivative in domain 2. As formulas (3.5) show, the analytic continu- 
ation of the flow in the domain exterior to the C$-characteristics has 
a Prandtl-Meyer type singularity at the point x = F = 0. ‘Ihe direction 
of the particle velocity in the solution (3.5) is parallel to the channel 
axis at points of the r-axis and along the parabolas 

located symmetrically to the r-axis behind the Mach lines passing through 
the center of the nozzle. Among the lines mentioned only the r-axis be- 
longs to the flow in the vicinity of the critical section. 

Let us put a minus sign before the B2 in (3.4) and (3.5); then we ob- 
tain the gas flow mapped in Fig. 4. Although it has no direct relation 

to the problem. it is still interesting as an example of mixed flow 

whose supersonic part transforms into a centered simple wave at the point 
x = r = 0. 

Let us turn now to the investigation of the limiting case of shock- 
less non-analytic flows whose image in the F’t’ plane is the I!1 curve go- 

ing in the reverse direction. Equation (1.4) has the following solution 

in domain 3 between the singular Mach 

lines 

f =$A,~--+A~,E (3.7) 

which is of the form (1.6) and where the 
constant is assigned the value - l/2 A,. 
lh e gas flow in this domain is described 
by the simple formulas (1.7) to (1.81, 
where it is also necessa.ry to make the 
mentioned change in the constant. ‘Ihe 
quantity A, is expressed in terms of A, 
thus 

A,=$A, (3 -8) 

It follows from (3.7) that the derivative dflg is everywhere less 

than zero in this limiting case of shockless flows with weak discon- 
tinuities, i.e. the velocity along the lines F = const in the flow 
domain bounded by the CT ‘-characteristics decreases monotonically. 

The flows mapped in the Ft plane by the curve K, passing in the for- 
ward and reverse directions will be among the continuous limiting flows, 
Ilence, it is easy to obtain tlie Prank1 inequalities [21 
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which are sufficient to ensure the shock- 

less character of the flow. Let us empha- 

size the following fact which is estab- 

lished directly from the analysis made of 

the integral curves in the Ft plane. In 

the domain located downstream of the C-O- 

characteristic near the center of the 

nozzle, the derivative &/ax which deter- Fig. 5. 

mine the rate of acceleration of the sub- 

sonic flow into supersonic, cannot exceed its value in the entrance. 

Even in the case when the nozzle has the shape shown in Fig. 5, and the 

Prandtl-Meyer flow is realized in the vicinity of the break in the wall, 

Fig. 6. 

the equality 

al4 

( 1 

Lh 

a2 r=-_o, ,=o =. ( ) az x=+0, p=o 

holds. 

‘Ihe behavior of the integral curves in 

the {f plane is shown in Fig. 6. For con- 

tinuous flows both the boundary points 

P(<,, f,) and ni(~,i, f2i) lie on the 

parabola f = 4<‘, as follows directly from 

equation (3.3). The line f=1/2 A,‘+A,c 

which corresponds to an analytic flow and 

the line f = l/8 A, 2-1/2 Ali which cor- 

responds to a flow with discontinuities in the first derivatives on both 

the singular characteristics are limit lines. All other integral curves 

in the $f plane issuing from the point P and describing shockless gas 

flow are located between them. The derivative (If/d< on both ends of the 

considered curves is bounded. 

Relation (3.4) yields a curve which is symnetric relative to the r- 

axis. Above it are the curves to which correspond integral curves of 

(1.12) in the F’i’ plane with the following branch location. Their 

branches going from the point C to the infinitely distant point F are 

included between the line K, and the lower branch of the curve I(,; the 

branches going in the opposite direction from the point E to the point 

C are between the line I{, and the upper branch of the curve K,. Between 

the curve (3.4) and the straight line (3.7) are the integral curves of 



Shockwave formation in Lava1 nozzles 469 

equation (1.4)) to which correspond the same curves in the F’t’ plane 

which start and end at the point C but whose branches go in the reverse 

direction. 

Ihe integral curves above t!le curve (3.4) ,are obtained for l/2 < 

AZ/A, < 1; the integral curves included between the curve (3.4) and the 

line (3.7) are obtained for l/4 < AZ/A, < l/2. 

PIhe requirement of continuity of the function f when passing through 

the singular Mach lines which was satisfied up to now in the construc- 

tion of shockless flows, guarantees the continuity of the stream velo- 

city component u along the x-axis. For continuity of the quantity v on 

the C,“- characteristics, it is necessary that the function g should also 

not have discontinuities. Since f = 45’ along the Mach lines tangent to 

the sonic curve at the center of the nozzle, it follows from (1.5) that 

this condition is also satisfied. 

Let us now consider the flow of a gas with shockwaves. In the F'i' 

plane they are mapped by curves going from the point C to the point B 

above the upper branch of the curve I<,; their continuations, starting 

at the point I?, go downward toward infinity as F + 4. ?he corresponding 

integral curves of (1.4) which describe flows with shockwaves separat- 

ing domains 3 and 2 are located on Fig. 6 under the line (3.7). A curve 

which maps the flow with critical values of the gas parameters behind 

the compression shock is their lower boundary. Let us note that the 

slope of the considered integral curves in the cf plane diminishes con- 

tinuously and becomes infinite in absolute value at the points of inter- 

section with the right branch of the parabola f = 45’. At the same time 

the slope of the curves going above the line (3.7) has a minimum value 

at the point P and then increases continuously. Hence, it follows that 

the reason for the origin of shockwaves in the vicinity of the critical 

section of the nozzle is the fact that the stream velocity behind the 

C-o-characteristic decreases more sharply than according to a linear 

law. 

Since the right branch of the parabola f = 4t2 corresponds to a C+O- 

characteristic, the state of the gas before the shockwave is mapped by 

points lying on it; the state behind the shockwave by points below it. 

In the limiting case when the velocity behind the shockwave coincides 

with the critical velocity, the {-axis corresponds to the flow behind 

the shockfront in Fig. 6. In this case A, = 0 and a uniform stream flow- 

ing with the speed of sound parallel to the x-axis is realized in the 

whole domain 2. Hence, we conclude that in the range of values 

O<A,iA,<+ (3.10) 
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a shockwave is formed in the flow on both sides of which the velocity 

is supersonic. ‘Ihe inequalities (3.10) also guarantee a further increase 

in the velocity in domain 2. 

The integral curve 

f = W-E-, d = const (3.11) 

of (1.4), which touches the origin I = f = 0 and has a derivative in- 

finite in absolute value there, corresponds to the line (1.15) in the 

FY’plane. According to the results obtained in the preceding section, 

the integral curve describing the flow with critical values of the para- 

meters behind the shockwave is located above the curve (3.11). 

The formula 

f = 4ci + 8c2 + d v/csF, (3.12) 

obtained by Fal’kovich [31 and giving the general solution of (1.4) as 

a function of two arbitrary constants c and d 

construction of the integral curves in domain 

we hence have the fundamental solution (1.6). 

transforms into (3.11). The singular solution 

from the equation presented by passing to the 

mentioned below. 

Using (3.5) we have 

can be used for the exact 

3. For c = l/4 A and d =O 

for c = 0 formula (3.12) 

(3.4) can also be deduced 

limit, as will be 

g = $ (48c2g + 32c3 + $d2 + 8cd I/c+s+ 2G vc + E) 

Hence, the nondimensional components u and v of the stream Velocity 

in domain 3 approach the limits 

1~ = 4cx + 8c2r2 + dr Jfz + cr2 

v = $ [48c2xr + (32~3 + $ d”) r3 + 2d(4cr2 + CT) 1/z + crz] 

(3.13) 

The relations (3.13) show that in the entrance and exhaust sections 

of the nozzle only the fundamental solution (1.6) yields gas motion 

which is symmetric relative to the x-axis. 

Before calculating the values of the constants c and d, let us note 

that equation (3.12) does not change upon transformation to the new 

quantities 

(3.14) 

Such a substitution is convenient in that any gas motion in domain 1 
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is described in the new variables by the formula 

f=8+4E 

independently of the values of the constant A, while all the remaining 
expressions retain their previous form. Let that substitution be made. 
Then the point P in Fig. 6 which maps the C_‘-characteristic will have 
the coordinates 6 = - 1. f = 4. All the integral curves of (1.4) pass- 
ing through domain 3 must start at the point P and must have the deriva- 
tive df/dc = - 2 there. Hence, we find a relation between the constants 
c and d 

d=-8((c++))/G--i (3.15) 

Let us analyze shockless flow with weak discontinuities along the 
Singular Mach lines. The integral curve mapping it should have the 
bounded derivative df/dc = 25* at the point Q(c,. 45,*). This require- 
ment determines the constant c 

c = 52 - Ea + 1 
3 (Es - 1) 

Using the last two formulas, we find 

+ _‘& 

9 a 
+ 1 (3.16) 

Let the value of the coordinate e2 tend to 1. Hence, c - * a. Per- 
forming the passage to the limit as c2 - 1, we obtain the integral (3.4) 
from the solution (3.16). The solution (3.16) satisfies all the bound- 
ary conditions at the points P and Q only if 

The obtained relation is easily transformed to the form (3.9) in 
which the condition guaranteeing the shockless character of the flow 
was written. 

Now, let (3.12) and (3.13) describe the flow with a compression shock 
issuing from the center of the nozzle. The relation (3.15) between the 
corresponding constants will hold as before. The curve mapping the dis- 

continuous flow in the cf plane intersects the parabola f = 45* when 

E=C l ’ 
whereupon according to the preceding 

O<E* <+ 

The derivative df/dc becomes infinite in absolute value at the point 

Q(<*, 4$**). The integral curve satisfying the imposed requirements can 
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be determined as 

f = - 4Ed + 8L2 + 8 ($ - E.1 V(E* + 1) (E*- 8 

The coordinate & of the compression shock in (2.3) and the quanti- 

ties f2 and f3 are found from the boundary conditions (2.4) and (2.5) 

but the latter are too awkward and have no explicit solutions. It is 

more convenient again to turn to the F’f’ plane to calculate them, where 

the general solution of (3.12). (3.13) can be represented as 

F = - 42 + 82% + e~“~ (z - I)“’ 

Y = - [- 42 + f6za + 2ez % (z - 1) ‘I, + f ez ‘11 (2 - q-‘/q (3.17) 

Here 

(3.18) 

Only those branches of the curves (3.17) which are obtained for z >l 

are of interest for the formulated problems. Points of their inter- 

section with the curve (2.9) yield the values F, and yy, corresponding to 

the state of the gas ahead of the shock front. The values F2 and I, of 

the quantities F and Y behind the compression shock are obtained from 

(2.6) and (2.7). Let z2 denote the magnitude of the parameter z for 

which the intersection of the curves (2.9) and (3.17) is achieved. The 

coordinate <g of the compression shock in (2.3) is found from the equal- 

ity (3.18) if we set z = z2. The constant Aq which expresses the rate of 

stream broadening in domain 2 is calculated from relation (2.8). Finally, 

using (1.11) and then (1.5), it is possible to determine the values of 

the functions f and g on both sides of the shockwave. 

Figure 7 shows the dependence of <g on the constant Az constructed 

by taking account of the substitution (3.14). In the range of ValUt?S 

1 < A2 g 4 the C+‘- characteristic is the line t2 = const. In this case 

the relation between t2 and A, is linear; it is calculated by means of 

the last of formulas (1.10). In the range 0 <A2 < 1 the CmPreSSiOII 

shock is the parabola c2 = con&. As is seen from Fig. 7. its Position 

changes slightly with changes in A2 as AZ - 0. The shape of the shock 

front behind which the gas parameters achieve critical values is given 

by the equality 

z = 0.075 Air” 

When A2 - 1 and the compression shock intensity is small, the depend- 

ence of <g on A1 is almost linear. For Aa = 1 the slope of the curve de- 

termining the position of the shock front agrees with the slope of the 

line E2 = l/2 A, which gives the position of the C+‘-characteristic. In 

conformance with (2.4) and (1.11) we have 

/s - f2 = 62” (8 - -‘2) 
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The described relation determines the compression shock intensity, 

i.e. the discontinuity in the magnitudes of the velocity, pressure, 
density and temperature during passage through the shock front. The dis- 
continuity in the magnitude of the slope of the velocity vector relative 
to the nozzle axis is given by the equations 

& - ga = - 2t$ (8 - 2Fx) 

Figure g shows the dependence of f3 - fl on the constant A2 con- 
structed also by taking account of the substitution (3.14). As is seen 
from Fig. 8. at the beginning (for 1 > A2 > 0.9) the compression shock 

Fig. 7. Fig. 8. 

intensity grows slowly as A2 
between f3 - ft and A2 seems 

Figs. 7 and 8, it is easy to 
tion of AS. 

diminishes. For 0.1 c A, < 0, the relation 
almost linear. Using the data presented in 
obtain the difference gg - g2 as a func- 

Up to now flows have been subjected to investigation whose character 

in the vicinity of the nozzle throat changed from subsonic to super- 
sonic. The analyzed type of gas motion is realized when the difference 
in the pressures at the nozzle entrance and exit is sufficiently large. 
If the pressure at the entrance does not radically exceed the pressure 
at the exhaust, then the flow will be subsonic on both sides of the 
nozzle throat but it may contain supersonic regions adjoining the walls 
in the vicinity of the critical section. As the pressure diminishes at 
the exit, the dimensions of the local supersonic zones increase and, 
finally, they merge on the channel axis. Such a flow is limiting in the 
sense that with a further reduction of the pressure in the exhaust the 
nature of the flow changes and the velocity field behind the critical 
section becomes supersonic. 

4. Ploum with local supersonic zones. Let us analyze the limiting 
gas motion which occurs when local supersonic zones adjoining the nozzle 
walls are joined on the axis. To do this, let us again analyze the 
Cauchy problem (1.2) but let us consider that AI > 0 and A2 < 0. The de- 
sired solution in domain f will be given by (1.7). as before, and in 
domain 2 by (1.8). from which it follows that the corresponding flow is 



474 0.s. Ryzhou 

subsonic on both sides of the channel throat 
ing the local supersonic region in shockless 

x==- 2 1 AIra, 

transition line bound- 
flows will be 

x = - $ A# 

While the first of these lines, unchanged, 

supersonic zone at the 
rear in discontinuous 

determined by the first of formulas (l.Q), the C+“-character- 

A# (4.1) 

The results of Section 2 show that the C+‘-characteristic exists 
only in a flow devoid of shockwaves; its structure in the vicinity of 
the nozzle center is shown in Fig. 9. 

The first of the boundary condi- 

tions (1.10) remains unchanged when 
integrating (1.4) in domain 3. If the 
flow is shockless, then according to 
(4. l), the second condition of (1.10) 
must be replaced by 

f=f2=fAza for E = EZ = - %Aa (4.2) 

Since A2 ( 0, then 
Fig. 9. 

If there is a compression shock in the flow, then the boundary condi- 
tion which must be satisfied on the right end of the interval when inte- 
grating (1.4) in domain 3 has the form, (2.41, (2.51, as before. 

Let us again use the phase plane F?‘, where as usual we will at the 
beginning dispense with the relation between the character of the flow 
in the vicinity of the nozzle center and the values of the constants Al 
and Ag. Since the flow in domain i remains unchanged it is mapped in 
Fig. 2 by the segment of the curve K1 located between the points A and 
D and having the previous direction of traversal. According to equation 

(2.8)‘ A* < 0 for Ejg > 0 either when F, < 0 and the upper sign is 
selected in front of the root or when the lower sign is taken in front 
of the root for arbitrary admissible values of Fg. Reasoning, analogous 
to that in Section 2 shows that the values of cZ remain Positive for all 
the considered flows. Hence, the domain 2 of gas motion with local super- 
sonic zones being closed on the nozzle axis is mapped by a Segment of 
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the curve h’l which is also located between the points A and D but has 

the opposite direction of traversal, i.e. from D to A. 

Let us consider flows devoid of shock fronts. The simplest is a flow 

which is mapped by the curve I;, passing in a straight line from the 

point A to the point C with a subsequent jump from the point C to the 

point D. The constructed flow agrees in domains f and 3 with the motion 

of a gas passing through the speed of sound in an analytic I,aval nozzle. 

The C_O -characteristic therein bears no singularities; the first deriva- 

tives of the velocity components with respect to the coordinates under 

discontinuities along the C+‘-characteristics (91. Satisfying the bound- 

ary condition (4.2), we obtain the value of the derivative &/ax in 

domain 2 

Aa = -2Ai (4.3) 

This is the least value of Aq for 3 given value of Al. In conformance 

with (4.3) we obtain 

In all the remaining flows of the considered type, the C_o-character- 

istic arriving at the nozzle center is the bearer of discontinuities in 

the first derivatives of the velocity components. The gas motion in 

domain 3 is mapped in the F’i’ plane by integral curves starting and 

terminating at the point C. Hence the parameters of the medium coincide 
in the whole space to the left of the C+O- characteristic starting from 

the nozzle center in flows with local supersonic zones and in corre- 

sponding flows with the passage through the speed of sound. The equality 

(3: 1) remains valid with passage through the C_“-cl~aracteristic. 

Upon continuing the flow from domain 3 into domain 2 it is necessary 

to perform a jump from the point C to the point D in the F’f’ plane. The 

C+‘-characteristic in gas motions with local supersonic zones also 

bears discontinuities in the first derivatives of the velocity compo- 

nents with respect to the coordinates. By using the last of equalities 

(3.3). we find the magnitude of this discontinuity 

(au 1 az]a = '/aA < 0 

Only in the flow whose mapping in the FY’ plane is the curve KI going 

in the reverse direction is the C+‘- characteristic devoid of any singu- 

larity. Actually, in this case the curve K, passes from the point A to 

the point D with a subsequent jump to the point C; from the point C the 

motion along the curve Kl proceeds through the infinitely distant point 

E to the point D and further, through this point again to the point A. 

The flow in domains 3 and 2 is described by (3.7). from which it follows 
that the greatest value of A2 guaranteeing shockless flow with super- 
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sonic zones closed on the channel axis is 

A* = -0.5A1 

Equation (4.4) is similar to (3.8). 

(4.4) 

Flows mapped in the FY plane by the curve K, traveling in the for- 
ward and reverse directions are, again, the limiting flows among the 
continuous flows. Hence, we find that the range of values of A2 corre- 
sponding to continuous flows is determined by the inequalities 

-2<A~z/Al<-O0.5 (4.5) 

which supplement Frankl’s inequality (3.9) referring to flows with the 

passage through the speed of sound. 

A flow symmetric not only to the channel axis x but also to the r- 
axis corresponds to the solution (3.4). (3.5). Evidently the value 

A2 = - A1 corresponds thereto. 

Let us turn to a study of flows with local supersonic zones which 
contain shockwaves. As in the continuous flows considered above, in the 
majority of flows with shockwaves the gas parameters in domains I and 3 
agree with the gas parameters in the corresponding motions where the 
transition from subsonic to supersonic velocities is performed. The very 
same curves which emerge from the point C above the upper branch of the 
curve K, and whose continuations, starting with the point E, lie under 
the lower branch of the curve K1 are their mapping in the FY plane. How- 
ever, the jump from the considered integral curves occurs not on the 
segment CA of the curve K, but on the segment DA. Hence, the state of 
the gas ahead of the shock front is mapped either by Points of the upper 
branch 

Ys = - (19 + 2Fa - 1/17 - 2F.q) 

of the curve K,* where 4 < F, < 8.5 or by points of the lower branch 
(2.9) of the curve K1*, where F, < Fj f8.5 (Fig. 2). The value Fs of 
the quantity F is obtained when the curve K, l intersects the integral 
curve of (1.12) which goes through the point (8, -36) in the FY Plane 
and maps the gas flow with critical values of the parameters in domain 
2. Let us designate this curve as K,. The compression shock in flows 
with local supersonic zones occurs earlier than in the corresponding 
motions where a passage from subsonic velocities in domain i to super- 
sonic velocities in domain 2 is realized. 

Integral curves of equation (1.12) which map the flows with a sub- 
sonic velocity field in domain 2 behind the shockwave pass below the 
curve K, in the FY plane. A flow without transition through the speed 
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of sound in the vicinity of the critical channel section is not obtained 
for any intersection of these curves with the lower boundary (2.9) of 
the curve K,+. 

Flows with shockwaves are given in the <f plane by curves which go 

below the line (3.7); their properties were described in the preceding 
section. The coordinate c2 of the compression shock is found as a result 
of the joint solution of (3.17) and (4.6) when 4 < F3 d 8; of (3.17). 
(2.9) and (3.17), (4.6) when 8 < F3 < 8.5. The range of values of A2 
corresponding to discontinuous motions is defined by the inequalities 

-0.5<Ag/Al<O (4.7) 

The results of computations showing the dependence of Ej2 on A2 for 
A2 < 0 are shown in the left half of Fig. 7. As before, the substitu- 
tion (3.14) is taken into account. In the range - 8 d A2 < - 2, the 
C+“-characteristic is the parabola k2 = const and the relation between 
<g and A, is linear, and given by the formula c2 = - 0.25 AZ, In the 
range of values - 2 < A2 < 0, the compression shock is the line g2 = 
const. For A2 = - 2, the line c2 = - 0.25 A2 transforms into a curve 
which determines its position as a function of the coefficient AZ. As 

A2 - 0, the position of the shock front changes only slightly with 
changes in AZ. 

As computations show, for 

- 0.5 <As / Al < - 0.15 (43) 

the velocity behind the compression shock is supersonic, it becomes sub- 
sonic downstream of the line x = - 0.5 A2r2. Such a flow is mapped in 
Fig. 10; the corresponding values F, and Y, lie on the curve I(, in the 

Fig. 10. Fig. 11. 

right FY half-plane. For A2 = - 0.15 A, the velocity behind the corn- 
pression shock equals the critical velocity and its component along the 
r-axis is positive. Hence, a diminution in the velocity occurs in domain 
2. The shock front is simultaneously the line of transition from super- 
sonic to subsonic velocities. The point (0, -2) in the FY plane corre- 
sponds thereto and the equation of the shock in the physical plane is 
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2 written as x = 0.775 A,r . 

In the range of values 

- 0.15 < ‘1,//11 < 0 (G.9) 

the velocity behind the shock front is subsonic and continues to decrease 

along the direction to the exhaust part of the nozzle. Such a flow is 

pictured in Fig. 11; the corresponding values F2 and Y2 lie in the curve 

/{I in the left F’!’ half-plane. 

The dependence of fJ - f 2 on A2 is given on the left half of Fig. 8 

for A2 < 0 as constructed taking account of (3.14). As follows from the 

presented computations, the amplitude of the compression shock achieves 

its greatest value at A2 = - 0.0875 Al. Formulas (4.8) and (4.9) show 

that the particle velocity behind the most intense compression shock for 

a given value A1 is less than the speed of sound. For values of A2 close 

to the left end of the interval (4.7) the amplitude of the shock front 

grows slowly as A2 increases. 

5. Construction of the nozzle profiles. Let us elucidate how 

the nozzle shape changes in the neighLorhood of the critical section as 

a function of the magnitude of the derivative &$3x in domain 2. Tt has 

already been note11 above tt,at the flow to the left of the c_“-character- 

istic is conveniently considered to Le the same for all the considered 

gas motions. Pence, the entrance section of all nozzles will be the 

same, their shape will differ in the region to the right of the c_O- 

characteristic. 

It should be emphasized that the entire investigation carried out 

here is of purely local character and refers only to the direct vicinity 

of the center of the flow. Let us take two streamlines located sym- 

metrically with respect to the x-axis and constructed in conformance 

with the solution of the Cauchy problem (1.2) as the nozzle walls. Hence, 

the equation of the channel walls at the point of intersection with the 
C+‘-characteristic will have a discontinuity in the third derivative, 

the slope of the wall with respect to the x-axis will change by a jump 

at the intersection with the shockwave. It is natural that it is im- 

possible to get the needed singularities in constructing the Profile of 

a real nozzle. Discontinuities in the derivatives of the velocity com- 

ponents or in the functions themselves, starting from the center of the 

channel, will later be reflected from its walls. In a number of cases 

this reflection may affect the nature of the original gas motion. For 

example, if the velocity is subsonic behind a shockwave extending down- 

stream, then its reflection from the nozzle walls is generally im- 

possible: it is practically impossible to realize the considered flow 

with local supersonic zones closed on the axis of symmetry. If the 
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corresponding motion exists, with a transition through the speed of 

sound, the latter is probably also unrealizable. These remarks should 

be kept in mind in estimating that magnitude of the deformation of the 

nozzle profile which accompanies a variation in the constant A2 which 

will not lead to violation of the flow in the entrance. 

Before turning to the construction of the nozzle profiles, let us 

find the position of the narrowest section. ‘Ihe direction of the velo- 

city is parallel to the n-axis in this section at points located on the 

nozzle walls. Hence, the position of the critical section is more simply 

determined by writing the equation of the line along which v = 0. IJsing 

(1.5), we obtain its mapping in the FY plane 

‘4=2F E (5.1) 

‘Ihe curve (5.1) is denoted by v* in Fig. 2. 

‘Ihe line carrying the null value of the transverse velocity component 

for an analytic nozzle is obtained by using (1.7); it is concave toward 

the incident stream 

x=- $ AIra 

As is seen from Fig. 2, on moving along the integral curves of equa- 

tion (1.12) we intersect the curve V* before arriving at the infinitely 

distant point J? only when the branches of these curves starting from the 

point C are included between the lower branch of the curve K, and the 

line K,. ‘Ihe line K, intersects the curve v* at the point E. lhe same 

ar&aent applies to the curves mapping flows with shockwaves and emerg- 

ing, as has been shown in Section 2, from the point C above the upper 
branch of the curve K,. 

It follows from the presented analysis that the line of null trans- 

verse particle-velocity components is located to the left of the r-axis 

and is concave to the incident flow when 0.5 < Az/A1< 1. 

‘Ihe flow (3.5) in which the velocity is parallel to the nozzle axis 

on the r-axis is realized in the domain between the singular CF- 

characteristics for A, = 0.5 A,. 

In the range O.i?S<A,/A, < 0.5 the flow remains shockless but the 

narrowest channel section is downstream of its center. In this case the 

line v = 0 is concave to the supersonic part of the nozzle. Its equa- 

tion for .2, = 0.25 A, will be 

x = 1/12 Alr2 (5.2) 
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Values of the derivative au/ax in the domain 2 of shockless flows 

with local supersonic zones closed on the axis of symmetry are obtained 

next. The interval - 2 <AZ/AI < - 1 corresponds to nozzles for which 

the critical section is located to the left of the origin. The value 

A2 = - A, is obtained when the nozzle has two axes of symmetry and v=O 

for x = 0. The range - 1 < A,/A, <- 0.5 corresponds to nozzles whose 

throat is to the right of the origin but which nevertheless guarantee 

shock free flow in its vicinity. 

As is seen from Fig. 2, discontinuous gas motions are always realized 

in nozzles for which the narrowest section is located to the right of 

the origin. Let h denote the half-width of the channel throat. ITsing 

formula (5.2) we conclude that the flow through a Lava1 nozzle becomes 

discontinuous if the critical section is located at a distance 
L > l/12 A,/12 downstream of the point of intersection of the sonic curve 

with the axis of synraetry. Whether the transition through the speed of 

sound is realized in the gas motion through such a nozzle or whether the 

velocity field in domain 2 remains subsonic is of no importance: the 

flow contains a shockwave. If the distance between the throat and the 

channel center does not exceed the mentioned limit then the flow remains 

shockless. As computations show, in the range of values of the constant 

A2 prescribed by the inequalities 

0.16 < AZ/AI < 0.25, - 0.5 < AZ/A, < -0.325 

the line u = 0 will be more curved than the compression shock. !Vhen 

-0.325 < AZ/A, < 0.16 

the shock front is simultaneously the line at which the values of v 

change from negative to positive when it is crossed. 

Let rx denote the deflection of the streamline from the line r = 

const. The quantity rx is found by integrating the differential equation 

drx / dx = (2m,)-1 v (x, P) (5.3) 

along the selected line r = const. Substituting the fundamental solution 

(1.7) subjected to the transformation (3.14) into the right-hand side of 

the relation (5.3). we find the shape of the entrance of the nozzles 

under considerat ion 

2m,r* = y Px + 8rxa (5.4) 

The equality (5.4) determines also the shape of an analytic nozzle 

downstream of the C_o-characteristic. The slope of the walls of non- 

analytic nozzles remains continuous at intersections with the 
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C_‘-characteristic while their curvature undergoes a discontinuity. Con- 

sidering the transformation (3.14) to be performed, we obtain the bound- 

ary condition for the integration of equation (5.3) in domain 3 

2rn,rx = - 5 re for x=-r% (5.5) 

Let us consider the singular flow with A2 = 0.5 A,, which is de- 

scribed by (3.5) in the domains between the C~“-cl~aracteristics. After 

substituting them into (5.3) and satisfying the boundary condition (5.5), 
we obtain the shape of the nozzle profile as 

11 I i 
2m,rx=-gr~+3rx~-3-qd 

Now, let the flow in domain 3 be given by using the general formulas 

(3.13) where the constants c and d are connected by (3.15). Integration 

of (5.3) taking account of the boundary condition (5.5) yields in this 
case 

2m,rx = $ { [8 (8s - 3c2 - 3c - 2) + $ (c + ;) (c - Q2(6c - i)] r5 f 

+ 8 (8c3 - 3c - 1) 92 $ 24carxr - 7 (c + 4) (c - if/‘(z + 6cra) (r: + cra)ih} (5.7) 

Putting c = 1 here, let us again return to (5.4). Selecting c = -0.5, 

we obtain a nozzle in which the discontinuities of the first derivatives 

of the velocity components are formed both on the C_ o-characteristics 

and on the C+‘- characteristics. The shape of its profile is given by 

equation 

h,rx = - 6r6 _ $9x $ 2rxa (5.8) 

Let K denote the curvature of the nozzle walls. In the considered 

approximation K = d 
2 x 

r /dx2. 

If the flow through the Lava1 nozzle is not analytic, then as has 

been noted above, the curvature of its walls undergoes a discontinuity 

at the intersection with the C_ O-characteristic. The magnitude of this 

discontinuity for profiles of all non-analytic nozzles will be 

because the discontinuity in the derivative au/& is defined uniquely 

for a given value of A1 upon passage through the C_“-characteristic. 

Let us consider briefly the behavior of the lines u = const along 

which the particle velocity, the pressure, the density and the teapera- 
ture retain constant values. According to (1.7), the lines u = const in 

the entrance of any nozzle are concave to the free stream. In domain 2 
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these lines are also concave to the free stream when A2 > 3 but they 

ar@ concave to the exhaust section of the channel when A2 < 0. Let US 

Consider the behavior of the lines u = const in domain 3. If the flow 

through the Lava1 nozzle is analytic, then the lines u = const are con- 

cave to the free stream in this whole domain. In shockless non-analytic 

gas flows near the C_“-characteristfc the 

lines carrying the same values of the gas 
a 

r parameters are concave to the exhaust section 
*\ I_ 

~ 

: ‘f , I’ c” \ 

of the nozzle and concave to the free stream 

in the vicinity of the C+‘-characteristic. 

’ I The latter statement follows from the fact 
f that, according to (3. l), the derivative 

df/dc is negative at points of the C-O- 
b X 

characteristic and the mentioned derivative 

takes on positive values at points located 

on the C+‘- characteristics. In limiting non- 

analytic gas flows when the discontinuities 

in the first derivatives of the velocity com- 

ponents are formed on both singular character- 

istics the lines u = const are concave to the 

exhaust section of the nozzle in all of 

domain 3. If the flow through the Lava1 nozzle 

is analytic, then the lines u = const in all 

of this domain are concave to the free stream. 

In shockless non-analytic flows of a gas, 

near the C-o -characteristic the lines bearing 

constant values of the gas parameters are con- 

cave to the exhaust section of the nozzle; 

and in the vicinity of the C+“-characteristic 

these lines are concave to the free Stream. 

The latter statement follows from the fact 

that according to (3.1)‘ the deiivative dj/dc 

is negative at points of the C_ -character- 

istic and the mentioned derivative takes on 

positive values at points located on the C+‘- 

characteristic. In limiting non-analytic gas 

Fig. 12. 
flow when the discontinuities in the first 

derivatives of the velocity components are 

formed on. both sides of the singular charac- 

teristics the lines a = const are concave to the exhaust section of the 

nozzle in the whole of domain 3. An analogous situation holds also in 

all flows where compression shocks are formed. Actually, the derivative 

df/d$ is not only negative along the curves in the $j plane which map 

the discontinuous gas motions but it also decreases with the motion from 
the C_‘-characteristic to the sompression shock. 
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The nozzle profiles constructed in conformance with equalities (5.4). 

(5.6) to (5.8) are presented in Fig. 12. The lines II = const are shown 
by solid lines there, as are the characteristics C_’ arriving at the 
center of the flow, the characteristics C+O closing the domain 3 of the 
shockless flows and the compression shocks in the discontinuous flows. 

All the constructed profiles guarantee supersonic or exactly sonic flow 
in domain 2, i.e. A2 > 0 for all of them. The analytic nozzle with 

A2 = A, is shown in Fig. 12a; the nozzle in which the flow (3.5) is 
realized for A2 = l/2 A, is mapped in Fig. 126; the nozzle where the 
gas motion has discontinuities in the first derivatives of the velocity 
components with respect to the coordinates on both the CT’-character- 
istics passing through the center is presented in Fig. 12~; A2 = l/4 Al 

corresponds to it. The flow through the nozzle shown in Fig. 12d is ob- 
tained for A2 = 0.07 A1 and has a compression shock. In the correspond- 
ing gas motion with the local supersonic zones being closed on the axis 
of symmetry, the velocity behind the compression shock equals the speed 
of sound, Flow through the nozzle presented in Fig. 12e corresponds to 
the value A2 = 0; the gas parameters therein take on critical values in 
the whole domain 2 behind the shockwave and the velocity behind the com- 
pression shock is subsonic in the corresponding motion with local super- 
sonic zones. As has been noted at the beginning of this section, it is 
impossible to realize such flows in practice. 

6. Flows with axial syametry. For v = 2, equations (1.1) describe 

transonic flows with axial symmetry. Let us use them to investigate the 
character of the passage through sound speed in a channel with a circu- 
lar cross-section. 

For v = 2 the system of equations (1.1) and the initial data (1.2) 

are invariant with respect to the same group of similarity transforma- 
tions as for v = 1. Hence. the solution of equations (1.1) referred to 
axisymmetric flows can be sought in the form (1.3). The equation for 
the function f analogous to (1.4) will have the form 

After it has been integrated the function g is determined by means 
of the formula 

g.= Ef+‘/a(f ---E2)df ldf (6.2) 

The fundamental solution of (6.1) is written as [81 

f =V4A2+AE (6.3) 

where, as before, the constant A equals the value of the derivative 
aa/& at the point x = r = 0. In conformance with formulas (1.3), (6.3) 
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and (6.2)) we find 

v = 'I2 ,421r + yla A-v (6.4) 

For A = A, the obtained equalities describe the gas motion in the 

entrance part of the nozzle, for A = A2 they yield the flow in the 

domain behind the C+‘-characteristic. When A, = A, the whole flow in 

the vicinity of the center of the channel is determined by (6.4); such 

a flow is realized in the analytic Lava1 nozzle. Later we shall consider 

the constant A1 to be the same for all the motions under consideration; 

we shall assume the constant A2 to be large or equal to zero in the 

beginning. 

The equation of the line of transition through the speed of sound 

will be 

The characteristic curves are found from the solutions of the differ- 

ential equation 

(dx / dr)2 = Al 2x + 1114 Al z2r2 

The singular CT’-characteristics 

nozzle are given by the formulas 

passing through the center of the 

x = l/g ‘41(1 - I/5)9 (C_“-characteristics) 

x = l/g 42 (1 -+- JG) r2 (C+“-character ist its) 

If the flow is devoid of shockwaves then the boundary conditions 

which must be satisfied when integrating (6.1) in the domain included 

between the C+’ -characteristics are written as 

f = 11 = l/8 412 (3 - 6%) for E = E;i = l/e .4i (1 - 1/S) 

f = f2 = l/S &A2 (3 + $% for 5 = 52 = l/e ‘42 (1 + v/s) 
(6.5) 

The compression shock in the discontinuous flow will be more curved 

than the C+‘- characteristic. Hence, only the first of conditions (6.5) 

for the integration of equation (6.1) in domain 3 remains unchanged in 

the construction of discontinuous flows. Formula (2.4) and the relation 

(/:! - 4V) ;k -i 12&f? = (f3 _ 4E22) z + 12k2f3 r, 

which follows from (2.2) and (6.2) act as the second boundary condition. 

The shape of the compression shock is given hy (2.3). 

In order to study the qualitative properties of axisymmetric flows, 

let us use again the method of the Fy phase plane. Using (1.11). let us 
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reduce (6.1) to the form [81 

Fig. 13. 

(6.7) 

dH 
dF- 

Y’+7’4P+6F’-W4-4F 
‘4(4-F) 

The general picture of the 
field of integral curves of equa- 
tion (6.7) is shown in Fig. 13 
where the notations of the preced- 
ing sections are used. The bound- 
ary conditions (6.5) which are 
used in constructing the axisym- 
metric shockless flows acquire the 
very same form in the FY’ plane as 
for plane-parallel flows 

Fl,r =4 

The equality (2.8) and the re- 
lation 

YYs+Yr=-40 (6.6) 

Which is obtained after substitu- 

tion of (1.11) into (6.6) are the 
boundary conditions on the com- 
pression shock. 

The mapping of the fundamental 
solution (8.3) in the FY’ plane 
will be called the Al-curve, just 
as before, and its equation will be 

‘I’=-2((1+Fr)/if) (6.9) 

Motion along the curve K, in the direction indicated by the arrow in 
Fig. I3 corresponds to the flow through an analytic Lava1 nozzle. As in 
plane-parallel flows, the domain 3 of ?bnckless non-analytic flows with 
axial symmetry is mapped in the F’i’ plane by curves emerging from and 
terminating at the point C. In the vicinity of the inifinitely distant 
point E they are represented by the expansion 

‘I’ = - 2F t_ cFlh + (4 - 3/S G) + (15,‘e ca - 7) cF-‘A - =I9 (8 - 14cz + 3~9 F-1 f. . . 

where c is an arbitrary constant. Putting c = 0. we obtain the equation 
of the curve K2 

Y=-2F+4--‘6/,F-‘+... (6.10) 

which goes in the forward and reverse directions. One of the branches of 



all the remaining integral curves of (6.7), which nap the shockless non- 

analytic flows, is included between the curve K2 and the lower branch 

of the curve K,, the other is between this same curve and the upper 

branch of the curve K,. In the limiting case, flow having weak discon- 

tinuities will be mapped by the curve K, traveling in the reverse di- 

rection. 

Duplicating the discussions presented in Section 1, we find that no 

discontinuities in the first derivatives of the particle velocity com- 

ponents with respect to the coordinates occur on the C+‘-characteristic 

of the axisymmetric flows. The expansion of the function f(e) in the 
vicinity of the point 6 = <2, corresponding to the C+“-characteristic 

also guarantees continuity of the second derivatives of the velocity 

components on crossing this characteristic.* As before, an exception 

occurs when the flow between the singular Mach lines is mapped by the 

curve K, traveling in the reverse direction. In the limiting case, the 

first derivatives of the stream parameters have discontinuities both on 

the C_’ -characteristics and the C+‘-characteristics. 

In the vicinity of the infinitely distant point G the single integral 

curve of (6.7) passing through it is represented by the expansion 

‘I’ = - 313 F -+- 2/5 _I- a,$:, F-1 +. . . (6.11) 

Let us denote the curve (6.11) by K,, as before. 

If the flow between the C_’ -characteristic and the r-axis is mapped 

in the F’f plane by the segment of the curve included between the curve 

K3 and the upper branch of the curve K, then the flow in the region be- 

tween the r-axis and the C,’ -characteristic is mapped by the integral 

curve of (6.7) which is a continuation of that segment and is located 

below the lower branch of the curve K,. In such a flow the C+‘-charac- 

teristic is simultaneously the limit line. Using the curve KS a flow is 

obtained where the limit line coincides with the r-axis. The integral 

curves of (6.7) located above the curve K3 yield examples of flows with 

limit lines to the left of the r-axis. It is impossible to continue them 

through the compression shock. 

Using (2.6), (6.8) and (6.9). we obtain an equation for the curve K,* 

(6.12) 

which relates the quantities F, and ‘?y characterizing the state of the 

l Let us recall that in plane-parallel flows the C+‘-characteristic 

bears discontinuities in the second derivatives of the velocity com- 

ponents. 
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gas ahead of the shockwave. In formula (6.12) 4 < Fj d 8. It is con- 

sidered that the flow velocity in domain 2 behind the compression shock 

is larger or equal to the speed of sound. Since only part of the inte- 

gral curves of (6.7) intersects the curve g,, not all the flows in which 

the limit line is the C+O- characteristic can be realized by the intro- 

duct ion of shockwaves. Exactly as in the plane-parallel flows, in dis- 

continuous flows with axial symmetry the compression shock is generated 

at the center of the nozzle and then is carried downward to the exhaust 

section by the stream. The C_’ -characteristic arriving at the nozzle 

center in all non-analytic gas motions carries discontinuities of the 

first derivatives of the velocity components with respect to the coordi- 

nates. 

The behavior of solutions of (6.1) will be qualitatively the same as 

for the curves presented in Fig. 6. The derivative df/dt for all these 

curves has the value 

d//dE= --‘/aA,(3- r/s) (6.13) 

upon approaching the C-O -characteristic from the right. 

Hence, the magnitude of the discontinuity in the derivative au/& on 

the C-O -characteristic is expressed uniquely in terms of A, 

[au / &]I = - l/z A, (5 - v/s) <0 

The equality (3.2) remains valid in shockless flows upon approaching 

the C+‘- characteristic from the left and right. The boundary conditions 

(6.5). (6.13) and (3.2) which must be satisfied in integrating (6.1) in 

domain 3 can be transformed to 

k = w, df~/dE=2(~/5--i)f~ for E = f1 

fi = 4522, dfaldS=2()/5--1)E.a for E=fa 

These relations show that dfl/dt < 0 and df2/dc > 0, i.e. the func- 

tion u first decreases in shockless flows and then grows along the 

lines r = const in domain 3. 

In the limiting case of shockless flows, when their mapping in the 

F’!’ plane is the curve I(, going in the reverse direction, the solution 

of (6.1) in domain 3 has the form 

j = l/g AIs (7 - 3 1/s) - ‘/a AI (3 - 1’;) f (6.14) 

Satisfying the boundary conditions in the form (6.5). we obtain for 

the constant Aq 

AZ = l/s A1 (7 - 3 v!$ 
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which is analogous to (3.8) for plane-parallel flows. Hence, we have 
the inequality 

‘/a(7--3$);)-4~z/Al<1 (6.15) 

which guarantees the absence of shockwaves in the vicinity of the 
critical section of a Lava1 nozzle, The inequalities (3.9) and (6.15) 
show that for a given value of A1 lesser values of A, are admissible 
for axisymmetric flows as compared with plane-parallel flows, and this 
does not lead to the formation of compression shocks. 

A curve symmetric with respect to the vertical axis corresponds to 

the solution (6. IO). Using (6.5), we obtain 

The integral curves of (6.1) above the curve symmetric with respect 
to the f-axis are obtained for 

l/2(3- V/5)<A2/ AI<* 

The integral curves included between this curve and the line (6.14) are 
found for 

l/2(7-3 1/5)<&/Al<‘/a(3- 1/s) 

The correspondence between the curves in the FY plane and the inte- 
gral curves of (6.1) for axisymmetrie flows is exactly the same as for 
the plane-parallel gas motions examined earlier. 

Flows with shockwaves behind which the velocity is supersonic and 

continues to increase toward the exhaust part of the nozzle correspond 
to the range of values 

0< A.~/A~<1/2(7-3 u’z) (6.16) 

For A2 = 0 the gas parameters in domain 2 take on the critical values 
and the c-axis corresponds to uniform flow behind the compression shock 
in Fig. 6. In this case the simple equalities 

I3 = 8$2, df3 I dE = - 2452 

are the boundary conditions which must be satisfied on the right end of 
the interval when integrating (6.1). The derivative df/d< continuously 
decreases during motion along the integral curves in the <j plane in 
the direction from the C-O -characteristic to the compression shock. 
Shockwave formation in nozzles with circular cross-section is accom- 
panied, as before, by deceleration in the domain behind the singular 
C_‘-characteristic more rapid than according to a linear law. In the 
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entrance to the Lava1 nozzle the flow remains unchanged, the formation 

of a shock front does not lead to its destruction. A comparison of in- 

equalities (3.10) and (6.16) shows that weaker compression shocks 

originate in axisymmetric than in plane-parallel flows for the same 

values of Al. 

The dependence of the quantities c2 and f3 - f2 on A, has the same 

character as that shown in Figs. 7 and 8. It is simplest to obtain this 

dependence by direct integration of (6.1) from a given point < = cl to 

a certain point { = c2 where the boundary conditions (2.4) and (6.6) are 

satisfied on the shock front. 

Let us consider axisymmetric flows in which local supersonic zones 

which are closed on the axis are formed in the vicinity of the channel 

throat. As in the plane-parallel gas motions, their parameters in domains 

f and 3 agree with the parameters of the corresponding flows where the 

transition through the speed of sound is performed. In domain I the flow 

is described by (6.4) with A = Al; in domain 2 by the same formulas with 

A = AZ, where A, > 0 and A, < 0. The transition through the speed of 

sound when moving along the streamline from domain 3 into domain 2 is 

performed either at points of the curve x = - l/4 A2r2 or on the com- 

pression shock. 

In shockless flows the equation of the C+‘-characteristic is written 

as 

z = l/s Aa (1 - JG) r* 

There the boundary condition for the integration of (6.1) in the 

domain included between the singular Mach lines is 

f = fa = VI3 AZ? (3 - V/s) for f = E2 = l/x Z42 (1 - v5) (6.17) 

The flow with local supersonic zones which corresponds to gas motion 

with a transition through the speed of sound in an analytic Lava1 nozzle 

in the FY’ plane is mapped by the curve Kl traveling in the forward 

direction from the point A to the point C with a subsequent jump from 

the point C to the point D. As before, the C_o-characteristic is devoid 

of any singularities while the first derivatives of the velocity compo- 

nents with respect to the coordinates undergo discontinuities on the 
c+o-c haracteristic [lo]. 

Satisfying the boundary condition (6.17). we obtain the equation 

AZ =- llgAl(3 + 1/s) 

‘which is the minimum value of the constant A2 for a given Al. Using the 

last relation we find 
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[au / 8.~1~ = - i:g Al (5 + V/5j 

In all the remaining flows with local supersonic zones, the C_‘- 

characteristic arriving at the center of the nozzle carries discontinu- 

ities of the first derivatives of the velocity vector components. The 

equality (6.13) remains valid for passage through it. In shockless flows 

the C+‘- characteristic also carries discontinuities in the first deriva- 

tives of the velocity components with respect to the coordinates. The 

magnitude of this discontinuity is determined by the formula 

Only in a flow mapped by the curve Kl traveling in the reverse direction 
does the C,’ -characteristic not carry any singularities. In domains 3 

and 2 the solution of (6.1) is described by (6.14). Hence, we have the 

largest value of A2 for which shockwaves do not originate in a flow with 

local supersonic zones closed on the x-axis 

The range of values of the constant A2 corresponding to shockless 

flows is therefore determ ined by the inequalities 

A comparison of inequalities (4.5) and (6.16) shows that larger 

values of A2 are admissible for axisymmetric flows with local supersonic 

zones as compared with analogous plane-parallel flows,and these larger 

values do not lead to the origination of compression shocks. The inequal- 

ities (6.16) supplement relations (6.15) which refer to flows with the 

transition through the speed of sound in the vicinity of the critical 

section of the channel. A flow symmetric with respect to the r-axis cor- 

responds to the solution (6.10) of equation (6.7); hence, A2 = - A1 for 

it. 

The study of axisymmetric flows with local supersonic zones having 

shockwaves leads to the very same deductions which were made in the 

study of analogous plane-parallel gas motions. In the majority of flows 

with shockwaves the gas parameters in domains 1 and 3 agree with the 

parameters of the corresponding motions where the transition throughthe 

speed of sound is performed in the vicinity of the critical section of 

the nozzle. In such flows the state of the medium ahead of the compres- 

sion shock is mapped either by points of the upper branch 

of the curve K,*, where 4 < F, < 9 or by points of the lower branch 
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(6.12) of this same curve, where Fs < FJ < 9. The value Fs of the 

quantity F is obtained at the intersection of the curve /Cl* with the 

integral curve K, of (6.7) which maps the flow with critical values of 

the parameters in domain 2. Only such integral curves of (6.7) as do not 

yield flows with a transition through the critical velocity for any 

intersection with the lower branch of the curve Kl*, pass below the 

curve K, in the F’f plane. 

The range of values of A2 to which discontinuous motions correspond 

is defined by the inequalities 

--'/2(3--~)<Az/fh<O (6.19) 

The character of the dependence of c2 and f3 - f2 on A, for discon- 

tinuous axisymmetric flows with local supersonic zones is qualitatively 

the same as for analogous plane-parallel flows. For example, the particle 

velocity behind the compression shock most intense for a given value of 

Al is less than the critical velocity. A comparison of inequalities (4.7) 

and (6.19) discloses that the compression shocks which originate in axi- 

symmetric flows have less intensity than in plane-parallel gas motions. 

In conclusion, let us analyze how the profile of a nozzle with a 

circular cross-section changes as a function of the magnitude of the 

derivative a&~ in domain 2. Using (6.2). we find the mapping V+ of the 

line v = 0 in the F’t’ plane; as before, it is given by (5.1). Duplicating 

the reasoning presented in Section 5, we find that the line v = 0 is 

located to the left of the r-axis and is concave to the free stream 

The line of zero transverse particle velocity for an analytic nozzle 

with A, = A1 has the form x = - l/8 A1r2. 

For A2 = l/2 Al(3 - 45) a flow is realized’ in the neighborhood of the 

nozzle throat in which the velocity vector is Parallel to the nozzle 

axis along the r-axis. 

In the range of values of A, prescribed by the relations 

l/2 (7 -3 JG, d Ae / Al < l/2 (3 - l/S) 

the flow remains shockless but the line u = 0 is concave to the exhaust 

section of the nozzle. Its equation for Ag = l/2 Al(7 - 3‘15) will be 

(6.20) 

The values of the constant A2 for shockless flows with local super- 

sonic zones closed on the axis will be in the following range: 
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where the line v = 0 is concave toward the free stream. 

The range 

corresponds to nozzles for which the line of the zero transverse velo- 

city component is concave to the exhaust section. 

The value A2 = - Al corresponds to flow through a nozzle having two 

axes of symmetry. There v = 0 for x = 0. 

Discontinuous gas motions are realized only in nozzles for which the 

critical section is located to the right of the origin. Using (6.20) we 

find that the flow through a Lava1 nozzle remains continuous if the dis- 

tance L between the throat and the center of the channel does not exceed 

the quantity l/16 Al(3 - ‘15) h2 where h denotes the radius of the throat. 

If 

the flow becomes discontinuous independently of whether the transition 

through the speed of sound is accomplished in the gas motion or the 

velocity field in domain 2 is subsonic. 

In constructing solutions of (6.1) in domains 3 and 2 it is convenient 

to put 

A1==2(1+ V/s) (6.21) 

Then, as in the plane-parallel flows, the value of the function f 

will be 4 upon crossing the C_“-characteristic at c = - 1. The equality 

(6.21) is equivalent to the transformation to the new variables 

Integration 

tion (6.4) has 

account in the 

of (5.3) in whose 

been substituted, 

formula 

right-hand side the fundamental solu- 

results when (6.21) is taken into 

The described relation yields the entrance section of all the nozzles 

under consideration; it also determines the shape of an analytic nozzle 

downstream of the C-O-characteristic. Using (6.22). we find the boundary 

condition for integration of (5.3) in domain 3 



Shockwave format ion in Lava1 nozzles 493 

2rtf,rx =-= - 2 (1 $- I/S) r5 for z = -r? 

Let us analyze a flow with discontinuities of the first derivatives 

of the particle velocity components on both sides of the characteristics 

passing through the center of the nozzle. The equation of its profile 

is written as 

2,t,,rX,= - 4 v5r5 + 4 (2 - 1/5) r% + 2 (3 - 1/5) r.9 

The magnitude of the discontinuity in 1(1, the wall curvature, of all 

non-analytic nozzles wit.11 circular cross-section at the intersection 

with the C_O -characteristic is given by the equality 

[Kll = &* (5 - 3 v5) Ai+ < 0 

The behavior of the lines u = const along which the gas parameters 

remain constant will qualitatively be the same in flows through axisym- 

metric nozzles as in plane-parallel motions. 
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